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Abstract 

 
Dynamics of the compression of a magnetized plasma target by a heavy liner made of 
partially ionized high-Z material is discussed. A “soft-landing”  (shockless) mode of the 
liner deceleration is analyzed. Conclusion is drawn that such mode is possible for the 
liners whose thickness at the time of the first contact with the target is smaller than, 
roughly, 10% of the initial (un-compressed) target radius. A combination of the plasma 
liner with one or two glide cones allows for a direct access to the area near the center of 
the reactor chamber. One can then generate plasma target inside the plasma liner at the 
optimum time. The other advantage of the glide cones is that they can be used to deliver 
additional fuel to the center of the target near the point of a maximum compression and 
thereby increase the fusion yield.  
 
1. Introduction 

 In this paper we discuss some aspects of fusion systems spanning the range of 
densities between the Magnetic Confinement Fusion and Inertial Confinement Fusion. 
More specifically, we have in mind densities between 1018 cm-3 and 1022 cm-3. An 
important ingredient in the plasma confinement in these systems is the presence of a 
strong-enough magnetic field that suppresses plasma heat conduction.  This version of 
fusion is commonly called “Magnetized Target Fusion” (MTF) (See, e.g., Refs. [1,2] and 
references therein) or “Magneto-Inertial Fusion” (MIF) (e.g., [3]). Within this broad 
category of fusion systems, there exist many specific realizations. We concentrate on the 
version of a 3D adiabatic compression of a pre-formed magnetized target, as discussed in 
Ref.  [1]. 
 Fusion reactors based on this concepts will be pulsed devices, with the energy 
release per pulse in the range 100 MJ to 1 GJ. Accordingly, they have to address a stand-
off issue for the permanent power supply system: the power supply should be situated 
outside the reaction chamber and, at the same time, allow for a rep-rate operation. An 
elegant solution to this problem is the use of plasma liners, generated by an array of ~ 
100 plasma guns mounted at the periphery of the reaction chamber [4-6].  A simpler 
version of this system could be based on the acceleration of a heavy shell made of a high-
A (A=atomic weight) material (a slow, high-A plasma liner) by thermal hydrogen plasma 
[7]. The liner is supposed to be generated near the walls of a chamber, 5-6 m in diameter, 
and accelerated towards the center by the pressure of a hydrogen plasma with a 
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temperature of a few electron-volts. Details of this process have been discussed in Ref. 
[7]. 
 In this paper, we concentrate on the interaction of the liner with a quasi-spherical 
MTF (MIF) target, starting from the instant of the first liner-target contact and following 
the system until the stagnation and early stage of the rebound. In Sec. 2, we present 
scaling laws for a 3D self-similar adiabatic compression of the magnetized target by the 
liner. In Sec. 3, the role of the magnetic field in alpha particle confinement is discussed. 
Sec. 4 deals with a possibility of reaching a high hydrodynamic efficiency of the target 
compression by providing conditions for essentially shock-less interaction of the heavy 
liner with a target. In Sec. 5, a brief discussion of possible ways for creating a plasma 
target inside the slowly imploding liner is presented. Sec. 6 addresses an issue of possible 
increase of the fusion yield by injecting additional fuel into the hot plasma core, very 
much as it is done in Magnetic Confinement Fusion.  Finally, Sec. 7 contains discussion 
of our main results.  
 We do not pretend that have found a final solution for MTF reactor: just identified 
some potentially promising leads for the further studies.  
 
2. Scaling laws for a slow adiabatic compression of a plasma target  
 

Consider a heavy plasma liner that adiabatically compresses a spherical 
magnetized target. We start with a spherical target of a radius r0.  The liner thickness is 
assumed to be much less than the target radius – otherwise, the compression is inefficient 
(see below). We assume that the target is adiabatically compressed by the pdV work 
performed by the liner. The liner, as a result, is decelerated. This (admittedly simplistic) 
model allows us to get some insights into relative importance of various processes. We 
later add more complexity (and realism) to the model.   

As we will see, the liner velocity is much less than the sound speed in the DT 
target. At the same time, the heat losses from the target (both radiation and heat 
conduction) are assumed to be small. Under such circumstances, the plasma compression 
can be considered as an adiabatic process. The plasma liner is made of a shell of a heavy, 
partially-ionized gas accelerated to the desired velocity by the pressure of a thermal, 
relatively cold (5-10 eV) hydrogen plasma [7]. 

Assuming that the initial beta was ~ 1, one can show that, in a 3D implosion, the 
beta soon becomes higher than one (see Ref. [1]). Then, the contribution of the plasma to 
the pressure and energy density in the target would be much larger than respectivre 
contribution of the magnetic field. This is a favorable feature: most of the compressional 
work will go into the plasma, not into magnetic field, as it would be in the low-beta 
systems.  

For the fully ionized plasma, one has  
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where p, T, and r are the target pressure, temperature, and radius; the subscript “0” 
corresponds to initial parameters of the target. The ratio of the initial r0 to final rf target 
radius is called ”convergence,”  
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If we start from the temperature of 100 eV, the required radial convergence C for 
reaching the fusion temperature of 10 keV is ~ 10. 

The deceleration g of the liner is, obviously,  
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where mL is the liner mass. This is an instantaneous deceleration for a particular value r 
of the radius. The highest acceleration is obviously reached near the stagnation point, 
when r=rf .  We denote this acceleration as gf : 
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One, obviously, has: 
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At the stagnation point, the liner energy is completely converted into the plasma energy. 
One has, therefore: 
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where WL0 is the initial liner energy, and vL0 is the initial liner velocity. Of course, in 
reality there are intrinsic inefficiencies in this process, and we will discuss them later. 
From Eqs. (4)-(6) one finds:  
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The energy conservation law shows that the liner velocity varies as  
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Note that significant decrease of the liner velocity begins only at the radii that are 4-5 
times less than the initial radius; 75% of the energy deposition occurs when the radius 
changes from 2rf to rf. One can easily show that the time tf for the target to be compressed 
from r0 to rf is:  
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This discussion is illustrated by Fig. 1, where time-histories of r, v, and g are shown.  

In our case, the “confinement time”, i.e., the time during which fusion reactions 
occur at a significant rate, can be identified as the time within which the target volume is 
near its minimum, between rf and rf(1+ε). We assume that ε=0.3.  The confinement time 
(the dwell time) is then 
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We neglect here the fact that the target plasma may be additionally heated by 

alpha particles. This effect will not lead to a dramatic change of the results if the fusion 
gain Q is modest,  Q<5-10, which is characteristic of the batch-burn systems. Using the 
Lawson equation for the equicomponent mixture of DT, one then obtains: 
 
Q=Knfτ ,          (11)  
 
where K is the Lawson coefficient, approximately 10-14 cm3s-1.  

Using Eq. (6), one can express the dwell time (10) as  
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If we choose some specific values for the parameters rf and nf, we thereby fix the initial 
liner energy WL0 (  

! 

WL0 = 2"rf

3nf Tf , with Tf=10 keV). The dwell time (12) scales then as 
mL

1/2. In other words, it seems (see Eq. (12)) that the best fusion gain can be reached for 
as high liner mass as possible. However, this is incorrect: at a slow implosion velocity, 
which would correspond to a high mass (at a given energy), the target would actually 
never reach the ignition temperature, due to radiation losses. Obviously, in order for the 
target plasma to heat up during the implosion phase, one has to compress it rapidly 
enough.  

In a lumped-parameter model of Ref. [8] that we follow here (see also Ref. [9]), a 
scan over dwell times (i.e., the liner masses) was made. The optimum turned out to 
correspond to Q~10.  This is the highest fusion gain that can be reached in the batch-burn 
model with an adiabatic compression of the target. More detailed calculations should 
include spatial distribution of parameters inside the target, as discussed by P. Parks (see 
reference to his analysis in Sec.4, p. 958 of paper [10]).  
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A factor that can additionally decrease the gain, is anomalous, Bohm-like 
transport. However, in the regimes of high collisionality characteristic of the MTF/MIF 
plasmas, the coefficient of the anomalous diffusion is always smaller than the Bohm 
coefficient (see [10,11]), 
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With that, the diffusive heat loss does not significantly degrade performance of MTF 
targets. We will return to this issue in the next section. 
 Based on these simple estimates, one can expect that the “sweet spot” for 
adiabatically compressed targets lies in the domain determined by Eq. (11) and Eq. (12) 
with Q=10. The other constraints on the system parameters stem from relations (1), (2) 
and (6):  
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Input parameters in this set of equations are the final and initial temperatures, Tf 

and T0, initial radius r0 and the liner energy WL0. One can set Tf=10 keV, and T0=0.1 keV. 
We assume also that ε=0.3, and take a maximum possible value for Q, Q=10. With that, 
we obtain the following characteristic equations (in “practical” units): 
 
C=10;           (18) 
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The liner velocity at the time when it first comes into contact with the target is: 
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These results are illustrated in Fig. 2.  

The sound speed in the initial, 100 eV DT plasma is 130 km/s. For all reasonable 
choices of the system parameters, it is significantly higher than the initial liner velocity 
(for r0=10 cm and WL0 = 10 MJ, vL0=8 km/s). Later in the pulse, the sound speed in the 
target increases, whereas the liner velocity decreases. Therefore, the plasma compression 
can be considered adiabatic throughout the whole pulse. Of course, we assume that the 
energy losses from the target, be it radiation or thermal conduction, are small compared 
to the pdV work. 

Although we have discussed implosions of spherical targets, all the scaling laws 
hold for 3-dimensional self-similar implosions of non-spherical targets, in particular, self-
similar implosions of FRCs [1, 12]. We ignore here the dependence on the elongation 
parameter (the ratio of the target length to its radius). If needed, this dependence can be 
easily incorporated into our scalings.  
 
3. Effects related to the magnetic field 

 
The magnetic field in the initial state can be expressed in terms of plasma pressure 

and the parameter β (the ratio of the plasma pressure to the magnetic pressure). Making 
the same as before assumption about the initial plasma temperature (0.1 keV), one finds 
that  
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or, using Eq. (19),  
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where the subscript “0” refers to the initial state. The magnetic field strength scales as 
(r0/r)2, see Ref. [1]. Therefore,  
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The plasma beta in the final state will be  
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In order the plasma energy in the final state to exceed the magnetic energy, a 

condition of βf>2/3 should hold, or β0>0.07. We have assumed in Sec. 1 that, in the initial 
state, β0~1, i.e., the plasma thermal energy exceeds the magnetic energy from the very 
beginning. However, our results will remain essentially unchanged even for smaller 
values of the initial beta, because the plasma energy would become greater than magnetic 
energy early in the implosion process. Still, for the further estimates we assume that β0~1 
(as in FRCs). 

The magnetic field in the final state determines, among other things, the alpha-
particle confinement. The figure of merit in this context is the ratio of 2.5 MeV alpha-
particle gyroradius ρα to the final target radius rf.  One has from Eqs. (2), (18), and (26), 
with β0-1,  
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For all cases of interest, this ratio is well below 0.1, signifying that a substantial fraction 
of alpha-particle energy will be deposited to the target (Fig. 1b).  
 For this last statement to be correct, one has also to check that the alphas slowing-
down time τα  is substantially shorter than the dwell time (12). One has [13, 14]:  
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(we assumed that the Coulomb logarithm is equal to 10). Substituting Tf=10 keV and 
using Eqs. (20) and (22), one finds: 
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In other words, the energy transfer from the alphas to the bulk plasma occurs essentially 
instantaneously.  
 In the version of MTF that we discuss here, there is no issue of the alpha-particle 
energy deposition in the sense discussed, e.g., in Ref. [15]. In our case, alphas are 
magnetically confined and certainly have enough time to deposit all their energy to the 
bulk of the compressed plasma. Of course, we assume, that there exist closed drift 
surfaces in the plasma target. If this is not the case, as, in particular, in diffuse Z-pinches, 
then alpfa particle deposition becomes subject to the analysis of Ref. [15]. However, for 
the targets like FRC’s, spheromaks and  spherical tori that are the subject of our study, 
drift surfaces are closed 
 One can also note in passing that a build-up of a pressure of alpha particles in a 
reactors-tokamaks poses a serious problem, as the presence of fast particles causes a 
variety of instabilities [16]. This is due to the fact that reactors-tokamaks favor quite a 
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high plasma temperature, exceeding typically 30 keV near the magnetic axis [16]. 
Conversely, as was emphasized in Ref. [14], in the MTF environment the optimum 
plasma temperature is much smaller and, at any instant of time, the alpha particles are 
present only in very small numbers. So, they will not have a significant negative effect on 
the performance of MTF systems.  
 Now we return to the issue of the role of anomalous transport. As a characteristic 
scale time we take  
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where the Bohm diffusion coefficient is defined by Eq. (13). Relating τdiff to the dwell 
time (22) and using Eqs. (18), (26) with β0=1, Tf=10 keV, we find: 
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For the typical set of parameters, W0L~10 MJ, r0~10 cm, this ratio is large (see Fig. 3). 
 
4. “Soft landing” as a way of reaching high hydrodynamic efficiency of the adiabatic 
compression 
 

As has been mentioned above, it is very hard (if possible at all) to reach Q above 
10 in the adiabatic compression, batch-burn scheme. Therefore, in order to have any 
chance for this concept to become a basis for an energy-producing reactor, one has to 
assure that the efficiency of the hydrodynamic compression is high.  

We argue that reaching a high efficiency is potentially possible by the use of an 
initially thin liner, with a thickness not exceeding ~0.1 of the initial target radius. We 
mean here not an initially solid, thin liner discussed, e.g., in Ref. [1], but a plasma liner. 
As we will show, under a relatively broad set of conditions, its interaction with the target 
would give rise to almost complete conversion of the initial liner kinetic energy to the 
target thermal energy. We, of course, imply, in agreement with Ref. [7], that the liner 
thermal energy is much less than its kinetic energy.  

A concern is that, when such a liner slams into a target, shock waves cause 
conversion of a significant part of a liner energy into its thermal energy, leading to the 
liner broadening, and, eventually, to a significant decrease of the target compression 
efficiency. On the other hand, in our case, the liner starts compressing the target at the 
stage where target pressure and density are very low, and cannot cause any significant 
deceleration of the liner. The mode of the liner-target interaction in our case is a “soft 
landing” mode, where the liner starts decelerating very gently (Fig.1), with the 
deceleration g gradually increasing, but never causing a sudden stop of the liner-plasma 
interface. Eventually, of course, the interface stops and rebounds, but this happens in a 
gentle, adiabatic manner. A more quantitative description follows below.  

In the frame co-moving with the liner, the scale-height h (liner thickness) is 
determined by the equation  



 

 9 

 

  

! 

dpL

dz
= "g#L           (33) 

     
The axis “z” is directed outward from the target-liner boundary. The subscript “L” refers 
to the liner parameters. For the polytropic liner of a constant temperature TL, one has 
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the liner-plasma boundary. One obviously has   
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pLb = p , where p is the pressure of the 
plasma target. Then Eq. (33) yields:   

! 
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h (the liner thickness) is: 
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For a polytropic gas, the total internal energy of the liner is 
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In order for the compression to be efficient, this energy must be much less than the 
internal energy of the target, which is   
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compression to be efficient, the condition  
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must hold, at least near the stagnation point.  
 For the polytropic liner, the liner compression leads to an increase of the internal 
energy. Taking internal energy at some reference radius r to be EL(r), one finds that 
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Given the scaling (1), one obtains: 
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In the absence of the heat exchange between the liner and the external world, this 

would yield an estimate of the internal liner energy at stagnation. As we have already 
mentioned, it must be significantly less than the plasma energy at this point 
(approximately equal to the initial liner kinetic energy WL0). This sets the limit on the 
liner internal energy at the radius at which the gravitational equilibrium has established. 
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As an example, take this radius to be 3rf, and γ=1.4. Then one finds from Eq. (38) that 
ELf=4EL(r=3rf). For this example, to ensure a 80% efficiency of the target heating at the 
most important stage of the implosion process, one has to have EL(r=3rf) less than 5% of 
the initial liner energy WL0.  

The liner will lose heat via radiation to the external world and acquire heat due to 
the energy losses from the plasma target. In our example, in order not to change our 
estimates of the liner parameters significantly, the plasma energy loss during the 
compression from 3rf to rf must be less than, roughly, 10% of the final target energy. This 
number seems to be reasonable: the target design must indeed be such as to make the 
energy loss from the target to be small. We leave for further work a more detailed 
analysis of the liner energy balance at the final stage of the implosion.  

Now we check that the liner slowing down at this stage occurs indeed in the 
“gentle” manner. This means that the deceleration g that determines the equilibrium (31) 
changes smoothly, without sudden jolts that may lead to development of shocks and 
cause  a strong non-adiabatic heating of the liner. The smoothness criterion is:  
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where sL is a sound speed in the liner material. The left hand side can be evaluated from 
Eqs. (7) as:  
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The liner sound speed is 
 

  

! 

sL = "
(Z +1)TL

Amp

.         (41) 

 
By noting that the liner pressure at the interface is equal to the target pressure p, one has: 
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After that, by substituting Eqs. (34), (40), (41), and (42) into Eq. (39), one obtains the 
following criterion: 
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This criterion is satisfied (although by a modest margin) for the liner temperature below 
~0.5 eV at the radii r<2.5rf, where main energy deposition takes place. Creating thin 
liners favors high atomic weight materials: as the liner temperature will be small (due to 
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radiation losses), the average charge state   

! 

Z  will not exceed a few, so that the ratio 
(  

! 

Z +1)/A would scale as 1/A.  
The previous discussion was related to the late phase of the implosion, from 

roughly 2.5rf to rf. Consider now an early phase, from the first contact of the inner 
surface of the liner with the target plasma, until the time where the liner compresses and 
reaches the hydrostatic equilibrium (33) in the effective gravitational field. The liner 
average velocity at this stage remains essentially constant and equal to v0, because the 
target energy remains still small compared to the liner initial energy (Eq. (8) and Fig.1).  
The target pressure is small and does not affect the liner dynamics in any significant way. 
The liner is just coasting towards the center and its thickness does not change 
significantly compared to its value just before the first contact between liner and plasma. 
This initial thickness should, of course, be significantly smaller than r0. The analysis 
presented in Ref. [7] shows that it is feasible (although not simple) for the liners made of 
high-atomic-weight materials with A~100-150.  

The summary of the results  presented in this section is qualitatively illustrated by 
Fig. 4, where the relative thickness of the liner h/r is presented as a function of time for 
the time segment between the instant when the liner has just touched the surface of the 
target and stagnation at t=tf. The time is measured from the instant of a first contact, 
where the liner thickness is assumed to be 0.1r0. Initially, the liner is coasting with a very 
small deceleration, and the thickness h does not decrease, so that the ratio h/r initially  
increases. However, at t~0.8tf the deceleration begins to increase, and the liner begins to 
thin down according to Eq. (34), due to increasing g. So, the ratio h/r begins to decrease 
rapidly, reaching the value ~ 0.1-0.2 near the stagnation point. Detailed description of 
this pre-stagnation thinning would require quantitative analysis of the effects of 
excitation and ionization in the liner on the equation of state, which would bring us well 
beyond a scoping study presented in this paper.  

 
5. Creating target inside the plasma liner 
 

Creating initial magnetized target is a complex task. As we have seen, its initial 
energy should be equal to approximately 1% of the liner energy. For a 10 MJ liner this 
means that the target has to contain initially 100 kJ. In addition, initial magnetic field of ~ 
100 kG has to be generated in the target. The target is basically a ball of a 100-eV plasma 
with embedded magnetic field. As we have seen, its sound speed is significantly higher 
than the implosion velocity of the heavy liner. The time between the heavy liner creation 
near the chamber walls and its first contact with the target plasma, for the chamber radius 
of 2-3 m, will be in the range of many hundreds of microseconds [7], whereas the time 
for the just created target to expand will be of the order of a few microseconds. So, if 
created too early, when the heavy liner is, say, half-way from the chamber walls, the 
target would rapidly expand and cool down. To avoid this difficulty, the target can be 
generated just at the time where the liner has already approached the desired initial target 
radius (~10 cm in our characteristic case).  The target formation time would not exceed a 
few sound transit times over the target initial radius, so that the slowly moving liner 
would cover a fraction of the desired target radius during the target formation. All this 
points at the need to create the target inside the moving liner, at the time when the liner 
radius is not significantly greater than r0.  
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Leaving more creative ways of target generation for the future analyses, we 
consider here the most straightforward technique based on the use of two insertion (glide) 
cones, as schematically shown in Fig. 5. The use of the glide cones was envisaged in Ref. 
[17] as a way of generating spheromak target inside the liner (Fig. 6). The conical 
electrodes have been successfully used in current-driven implosions of spherical, initially 
solid liners [18]. Similar configuration is used in experiments on fast ignition (see Ref. 
[19] and references therein). In these experiments, as well as in the related computer 
simulations (see Ref. [19]), the feasibility of such arrangement has been established  

The presence of the sacrificial insertion cones would allow accommodating the 
circuitry and the gas-puff system needed for the creation of a magnetized target plasma 
near the center of the device, without disrupting the heavy liner that has been launched 
well before that. We leave the clarification of specific details for the further work. Here 
we only mention that the cones can be made quite light; also, they will be needed only for 
the creation of the target, this meaning that the required energy will be at the level of 1% 
of the energy that will be later delivered by the plasma liner. This would, therefore, be an 
intermediate approach between a full detachment of the target from the external power 
source and its direct mechanical (and electrical) connection to the external power source, 
where the full energy would be delivered to the implosion system by disposable 
conductors, as in Refs. [20, 21].  

 
6. Increasing the fusion yield by the fuel injection 
 

It has been realized long time ago (e.g., [1]) that the maximum fusion gain that 
can be reached in batch-burn MTF systems can hardly exceed Q~10. Such a gain is only 
marginally acceptable for the energy-producing system, and increasing Q by a factor of a 
few is highly desirable. An obvious approach to solving this problem is adding some fuel 
to the target where fusion temperature has already been reached, and the alpha-particle 
energy release became comparable to the compressional heating. Ref. [4] has mentioned 
the possibility of using a dense layer of DT at the inner surface of a fast plasma liner. 
This layer would be heated by alpha particles released in the target core. This approach is 
reminiscent of a propagating burn approach in ICF (e.g., [22]). In the context of plasma 
liners, it is still under investigation [3, 6].  

Certainly, an approach discussed in our present paper, with its slow liner and 
good alpha particle confinement in the fusion core, is not suitable for the use in the 
propagating burn system. To increase the yield, we suggest to use a fuel injection to the 
hot target core, starting just before the point of the maximum compression and ending 
shortly thereafter. This possibility has been mentioned to one of the authors (D.R.) by E. 
Velikhov (1992) and G. Logan (1997). We believe that the setting of Fig. 5, 6 adds some 
degree of realism to this idea, as it provides the way of reaching the hot plasma core 
without interfering with the liner.  

If Q~10 state is reached, then the alphas start making significant contribution to 
the plasma heating: for Q~10, amount of heat produced by alphas is twice as much as it 
was initially deposited to the plasma.  By adding twice as much fuel as was available 
initially, one would avoid the (unwanted) overheating and, at the same time, increase the 
reaction rate by a factor of 9. This would, of course, lead to faster target expansion during 
the rebound. Still, increasing the fusion yield by a factor of 3-4 seems to be feasible. We 
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believe that getting now into more detail and optimizing of the injection time-history is 
somewhat premature, as one has first to identify the way of injecting fuel into the hot 
plasma core.  

Adding large amounts of the fuel to the plasma core was considered by D. Barnes 
[23], without specifying the delivery mechanism. It was concluded in Ref. [23] that fuel 
influx through the whole plasma surface may allow reaching extremely high gains. We 
leave analysis of this intriguing idea in the setting of Fig. 5 for the future work. 

Conceptually, adding a modest amount of fuel to the hot plasma reminds the fuel 
injection into tokamaks, including ITER [24]; in this regard, we are going to exploit the 
features of MTF systems that make them similar to their MFE counterparts.  Among 
possible ways of core fuel injection for tokamaks are pellet injection and compact toroid 
injection [24]. However, in our case, despite much smaller dimensions of the plasma, the 
line density is much higher. Still, both of the aforementioned approaches may hold some 
promise. In our case, one can also use injection of a narrow jet of fuel.  The jet velocity 
has to be smaller than the plasma sound speed, since otherwise the creation of the jet 
would require more energy than was spent on the initial plasma implosion. The plasma 
beta in the final state is quite high, and the jet wouldn’t have to struggle with the 
penetration through the high magnetic field. It may be necessary to generate jets with 
some magnetic field inside them, that would prevent the jet material from mixing with 
the peripheral plasma in the target. The particle inventory, as has already been mentioned, 
should be about twice the hot plasma inventory.  

Characteristic duration of the fuelling process should be comparable with the 
dwell time, which is in the range of 10-6 s for the target of the final radius of 1 cm and 
energy of 10 MJ. 

Plasma jets for refueling can be generated by special sources situated near the tips 
of the cones. The other possibility is a creative use of the jetting phenomena in the 
interaction of the plasma liner with the outer surface of the cone, where a small amount 
of the fuel could be stored near the tip of the cone and released at the appropriate time.  
 
7. Discussion 
 
 We have discussed several modifications of MTF systems driven by the heavy 
plasma liner [7]. The first one is related to an attempt to increase the hydrodynamic 
efficiency of the adiabatic compression by operating the system in a shock-less, “soft 
landing” mode. Reaching this mode imposes rather strict constraints on the liner 
thickness, just prior to its first contact with the plasma target. The liner thickness at this 
time should not exceed 0.1 of target radius. The liner should also be relatively cold, with 
the temperature of a fraction of electron-volt. Radiative heat losses from the liner at the 
stage of its acceleration towards the target should help in satisfying this condition (see 
[7]).   
 The second modification consists in the use of the insertion cones to generate the 
target plasma. This approach will probably work, as it has been successfully used in the 
geometrically similar systems [18, 19] (although in a very different parameter domain). 
 Finally, we suggest to use a fuel injection technique similar to the one used in 
MFE systems, to increase amount of fuel near the point of the maximum compression by 
a factor of 2-3. This technique could lead to an increase of the fusion yield by a factor of 
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3-4 (i.e., to 30-40) and make the system more energy efficient than a batch-burn system 
considered in [1]. 
 There remain a number of physics and technology issues that we haven’t touched 
upon in this paper. The most prominent physics issue is that of the liner stability. It 
should be studied both numerically and analytically for the conditions characteristic of 
MTF implosions, which are quite unique in many respects.   

The most difficult engineering issue is that of the compatibility of the plasma liner 
approach with the need to breed tritium and protect the walls of the reaction chamber. 
Here one has to analyze the compatibility of using thick liquid blanket with the overall 
“architecture” of the system.  
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Fig. 1. Time-histories of the liner radius (coinciding with the outer radius of the 
target), blue curve, liner velocity (green curve), and liner deceleration (red curve). 
The normalization factors gf  and tf are defined by Eqs. (4) and (9), respectively. Note 
a long period during which the liner is coasting with essentially constant velocity.  
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Fig. 2. Scalings for quasi-spherical implosions. Red lines: input energy 10 
MJ; blue lines: input energy 1 MJ. Solid lines: plasma density; dashed lines – 
liner mass; dotted lines: liner velocity. 
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Fig. 3. Additional scalings for spherical implosions. Red lines: 10 MJ, 
blue lines: 1 MJ; solid lines: parameter ρα/rf, Eq. (28); dashed lines: 
τD/τ, Eq. (32). Note different scales on the left and the right vertical 
axes. 
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Fig. 4. A sketch of the time history of the relative liner thickness.  
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Fig. 5 Schematic of a plasma liner gliding over the surfaces of two insertion cones, not to 
scale. Chamber radius is 2-3 m, whereas the radius of the imploded target on panel c) is ~ 1 
cm. Glide cones are inserted prior to the beginning of the shot. Panel a) corresponds to the 
first half of the liner acceleration process, roughly 200-300 µs after beginning of the shot.  
Panel b) corresponds to the point where target has just been created and the liner is about to 
start compressing it. Panel c) corresponds to the stagnation point. 
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Fig. 6 Implosion of a quasi-spherical compact toroid by a liner gliding 
over the surface of two cones. Left panel – beginning of the 
implosion; right panel – near stagnation. 


